
## SYNTHESIS OF CYCLOOCTATRIENE-1, 4-DIONE BISETHYLENEKETAL

Penelope A. Chaloner, Andrew B. Holmes, M. Anthony McKervey,<sup>1</sup> and Ralph A. Raphael University Chemical Laboratory, Lensfield Road, Cambridge. CB2 1EW U.K.

(Received in UK 19 November 1974; accepted for publication 16 December 1974)

Recently, there has been considerable interest in the synthesis of the cyclooctatrienediones<sup>1</sup> and their valence tautomers.<sup>2</sup> We now wish to report the preparation of cyclooctatriene-1,4-dione bisethyleneketal (5), the immediate precursor of the potentially aromatic diketone (<u>1</u>).

Oxidation of 4-hydroxycyclooctanone<sup>3</sup> with chromium trioxide in aqueous acetic acid afforded the known cyclooctane-1,4-dione (2),<sup>4</sup> which was converted in 50% yield into the bisketal (3),<sup>5</sup> m.p. 40-43°, under carefully controlled



conditions (ethylene glycol, oxalic acid, and trimethyl orthoformate in acetonitrile for 12 hours at room temperature.)<sup>6</sup> Bromination of the bisketal (<u>3</u>) with three equivalents of bromine in ether at room temperature gave in 30% yield a crystalline tribromide (<u>4</u>), <sup>5</sup> m.p. 184-186<sup>0</sup>, which appeared to be a single compound, although the relative stereochemistry has not yet been defined. The

spectral data for the intermediates  $(\underline{2})$ - $(\underline{4})$  are shown in the Table.

Dehydrobromination of the tribromide ( $\frac{4}{2}$ ) with potassium <u>t</u>-butoxide in refluxing <u>t</u>-butanol for seven days gave cyclooctatriene-1,4-dione bisethyleneketal ( $\frac{5}{2}$ ),  $5 \text{ m.p. } 74-76^{\circ}$ , in 50% yield. Dehydrobromination (90°, 3 days) in diazabicyclo[5.4.0]undec-5-ene (DBU) produced the triene bisketal ( $\frac{5}{2}$ ) rather less efficiently (25%). Compound ( $\frac{5}{2}$ ) showed a parent molecular ion in the mass spectrum at m/e 222.0898. C<sub>12</sub>H<sub>14</sub>O<sub>4</sub> requires m/e 222.0891. The monocyclic nature of this product was confirmed by its hydrogenation at atmospheric pressure (Pt/hexane) to the saturated bisketal ( $\frac{3}{2}$ ), identical in all respects with an authentic sample.

The triene bisketal (5) showed essentially three signals in the <sup>1</sup>H n.m.r. spectrum of a carbon tetrachloride solution:  $\tau$  3.70 (s, 2H, H<sub>2,3</sub>), 4.38 (s, 4H, H<sub>5,6,7,8</sub>), 6.10 (finely split m,  $\frac{W}{H}$  7 Hz, 8H, ketal CH<sub>2</sub>). In perdeuterobenzene solution, solvent shifts were observed, and the <sup>1</sup>H n.m.r. resonances occurred at  $\tau$  3.18 (s, 2H, H<sub>2,3</sub>), 4.16 and 4.54 (AA'BB' m, J<sub>AB</sub><sup>21</sup>2 Hz, H<sub>5,6,7,8</sub>), 6.48 (s, 8H, ketal CH<sub>2</sub>). The noise decoupled FT<sup>13</sup>C n.m.r. spectrum in deuterochloroform solution exhibited the following signals:  $\delta$  (relative to TMS) 78.1 and 78.4 (ketal methylene carbons), 118.5 (C<sub>1,4</sub>), 142.1 (C<sub>2,3</sub>), 151.7 and 155.5 p.p.m. (C<sub>5,8</sub> and C<sub>6,7</sub>). The assignments of resonances to the ketal methylene carbons and to C<sub>1,4</sub> and C<sub>2,3</sub> were confirmed by off-resonance and gated decoupling experiments, but it was not possible to distinguish the resonance due to C<sub>5,8</sub> from that due to C<sub>6,7</sub>. In the infrared spectrum (carbon tetrachloride solution) the double bonds of the triene (5) were evident at 1615 cm<sup>-1</sup> while bands at 1165, 1150, 1120, and 1015 cm<sup>-1</sup> indicated the presence

No. 4

of the ethyleneketal groups. The ultraviolet spectrum (EtOH) of ( $\underline{5}$ ) exhibited a maximum at 244 nm ( $\varepsilon$  6700). Related compounds, such as 5,7-dibromocycloocta-1,3-diene [238 nm ( $\varepsilon$  5670)] and 5,8-dibromocycloocta-1,3-diene [240 nm ( $\varepsilon$  6310)] show very similar behaviour.<sup>7</sup> The chemistry of the triene bisketal ( $\underline{5}$ ) is under active investigation.<sup>8</sup>

## TABLE

| Compound     | i.r. (cm <sup>-1</sup> ) | Solvent          | 100 MHz <sup>1</sup> H n.m.r. ( $\tau$ )                                         | Solvent |
|--------------|--------------------------|------------------|----------------------------------------------------------------------------------|---------|
| ( <u>2</u> ) | 1715                     | CC14             | 7.32 (s,4H); 7.59 (m,4H)<br>8.14 (m,4H)                                          | CDC1 3  |
| ( <u>3</u> ) | 1135, 1120<br>1095, 1050 | CC14             | 6.21 (fine d, 8H)<br>8.28 (s,6H); 8.36 (s,6H)                                    | CC14    |
| (4)          | 1115, 1110<br>1060       | ccı <sub>4</sub> | 4.90 (m,1H); 5.30 (m,1H)<br>5.70 (s,4H); 5.94 (s,5H)<br>7.24 (m,2H); 7.60 (m,4H) | CDC13   |

## Spectral data for compounds (2)-(4)

## NOTES AND REFERENCES

- <sup>1</sup> Present Address: Department of Chemistry, The Queen's University of Belfast, Belfast, Northern Ireland.
- (a) M.P. Cava and K.W. Ratts, J. Org. Chem., <u>27</u>, 752 (1962); (b) D. McIntyre G.R. Proctor, and L. Rees, J. Chem. Soc.(C), 985 (1966); (c) P. Yates, E.G. Lewars, and P.H. McCabe, Can. J. Chem., <u>48</u>, 788 (1970); (d) <u>ibid.</u>, <u>50</u>, 1548 (1972); (e) J. Tsunetsugu, M. Sato, and S. Ebine, J.C.S. Chem. Comm., <u>363</u> (1973).
- 2. (a) P. Yates and G.V. Nair, Synthetic Commun., <u>3</u>, 337 (1973); (b) M. Oda,
  Y. Kayama, and Y. Kitahara, Tetrahedron Lett., 2019 (1974); (c) Y. Kayama,
  M. Oda, and Y. Kitahara, Tetrahedron Lett., 3293 (1974).
- 3. We thank BASF, Ludwigshafen, for a generous supply of this compound.
- A.C. Cope, A.H. Keough, P.E. Peterson, H.E. Simmons, and G.W. Wood, J. Amer. Chem. Soc., <u>79</u>, 3900 (1957).
- 5. All new compounds gave satisfactory microanalytical data.
- 6. See N.H. Anderson and H.-S. Uh, Synthetic Commun., 3, 125 (1973).
- 7. M. Kröner, Chem. Ber., 100, 3162 (1967).
- 8. The award of a Science Research Council Studentship (to P.A.C.) is gratefully acknowledged.

We thank Dr. J.K.M. Sanders for help in analysing the n.m.r. spectra.